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Modified Bead Spring Theory of Dilute Polymer 
Solutions. 111. Inclusion of Multiple 

Relaxation Times 
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Synopsis 

A previously derived constitutive equation, representing a blending of the molecular 
dumbbell theory and a continuum theory of anisotropic fluids, has been extended to  the 
multidumbbell (Rouse-Zimm) case. The equation thus derived yields predictions equiv- 
alent to the Rouse-Zimm theory in small-amplitude dynamic shearing, with the exception 
that the introduction of an “effective molecular weight” as the concentration of polymer 
is increased is no longer required. In simple shearing flow, the theory predictions are far 
superior to  those of the Rouse-Zimm model, yielding realistic non-Newtonian viscosity 
behavior, a positive primary normal stress difference, and a negative secondary normal 
stress difference. In stress relaxation following the cessation of steady shearing flow, 
the rate of relaxation is found to  depend to the initial velocity gradient, but the effect is 
predicted to be too small to  be observed experimentally in typical dilute polymer solu- 
tions. The effects of molecular weight, molecular weight distribution, and polymersol- 
vent interaction are explicitly accounted for, and in all cases the theory predictions are in 
excellent qualitative agreement with accepted experimental behavior. 

INTRODUCTION 

The theoretical development of constitutive equations for dilute polymer 
solutions has generally been approached from two distinct viewpoints : 
continuum mechanics or molecular theory. Each of these procedures suf- 
fers from certain disadvantages which detract from their utility. For ex- 
ample, the continuum theories invariably contain a large number of un- 
known constants which must be determined experimentally; and, in addi- 
tion, the theories yield no information on the relationship between these 
constants and the molecular properties of the fluid under consideration. 
The molecular theories, on the other hand, must necessarily be based on 
rather idealized hydrodynamic models of the polymer molecule in solution, 
such as the bead spring model’; and frequently these models must be signifi- 
cantly generalized and complicated, e.g., through the inclusion of “internal 
viscosity,” in order to describe various nonlinear effects such as a shear- 
thinning viscosity function. Furthermore, these molecular theories are 
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often not expressible in the form of an explicit constitutive equation, that is, 
an explicit relation between the stress tensor and the velocity field. 

In  a series of recent  paper^,^-^ we have developed a constitutive equation 
for dilute polymer solutions which represents a “blend” of both continuum 
mechanics and molecular theory and eliminates many of the objections to 
these two procedures discussed above. The theory explicitly accounts for 
molecular weight, molecular weight distribution, and polymer-solvent inter- 
action and contains but a single phenomenologic constant, el which is re- 
stricted to the range3 

0 5 e < 1.0. 

Thc predictions of the theory have been shown to qualitatively describe a 
large variety of experimental data for both dilute and moderately concen- 
trated polymer solutions. However, in the case of small amplitude data, 
e.g., q’ and G’ versus w ,  the theory was found to  be satisfactory only in the 
low-frequency rangeJ5 where it yielded predictions very similar to  those of 
the well-accepted Rouse-Zimm model. For higher frequencies, the theory 
predictions began to deviate both quantitatively and qualitatively from the 
Rouse-Zimm results. This inability to describe high-frequency dynamic 
data is a consequence of the single relaxation time used in the theory. 
Similar difficulties appear in the calculation of the stress relaxation rate fol- 
lowing the cessation of steady shearing flow.4 In this case, the rate was pre- 
dicted to be independent of initial velocity gradient, in disagreement with 
available data on concentrated polymer solutions7 (dilute solution data is 
unavailable) ; and again, this appears to be due to the presence of a single 
relaxation time. To more realistically describe the time-dependent be- 
havior of dilute polymer solutions, the presence of multiple relaxation times 
must be included; and that is the objective of the present work. As will be 
seen, the inclusion of multiple relaxation times also greatly improves the 
ability of the theory to  describe steady flow phenomena. 

THEORETICAL DEVELOPMENT 
The basis of our original single-relaxation time theory was the “contin- 

uum” structured fluid theory developed by Ericksen.8 Combining the re- 
sults of Ericksen’s theory with the molecular dumbbell model lead to the 
following expression for the stress tensor4: 

62 N AC 

Dt M z + e - = 2 - kTB(1 - e)D 

where 

D2 32 
Dt dt 
_ -  - - + V - V T  - Q - 7  + C * Q  - (1 - B)D-T - 0-(1 - 6)D. ( 2 )  

In  these equations, 8 is the relaxation time, N A  is Avogadro’s number, c is 
the polymer concentration, M is the molecular weight, k is Boltzmann’s 
constant, T is the temperature, v is the velocity, Q is the vorticity tensor 
[ = ’/z(VV - vvl)], and D is the rate of strain tensor [ = l/B(Vv + VV‘)]. 
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This result is identical to  the corresponding result from the dumbbell 
model, except that the rate of strain tensor is multiplied throughout by the 
value (1 - E ) .  This single modification strikingly improves the predictions 
of the theory for steady shearing flow, without significantly affecting the dy- 
namic behavior, where the dumbbell theory gives reasonably good predic- 
tions for low frequencies. Thus, the continuum theory of Ericksen sug- 
gests that the “effective” velocity gradient acting on an isolated macro- 
molecule in solution is given by 

VV - ED. (3) 
In  order to describe high-frequency dynamic data accurately, it is well 

known that the simple dumbbell model must be extended to a multibead 
spring or Rouse-Zimm-type model.’ Such an extension still suffers from 
the same unrealistic simple shearing predictions as the single dumbbell 
formulation, however. Our findings suggest that the substitution D 4 
(1 - r)D into the Rouse-Zimm theory should greatly improve steady shear- 
ing results without affecting the already excellent predictions for dynamic 
data. 

A convenient formulation of the Rouse-Zimm theory has recently been 
developed by Lodge and W U . ~  These authors expressed the theory, for an 
arbitrary degree of hydrodynamic interaction, in the form of an explicit 
constitutive equation as follows: 

67. N A C  
Dt M + e, = 2 ~ kTe,D (4) 

where ‘ 

N 

j = 1  
T = & 5  

N is the number of “submolecules” in a chain, and O,, the j t h  relaxation time, 
is given by 

el x1 e, = - 
A5 

(7) 

where the Xj’s are characteristic values of the matrix 

and the Hi ,k ’ s  are defined by 
Hi, i  = 1 

h = l(67r3) -’’‘(v&)-~. (10) 

*Note that rj = Pi* - nokT6, where Pi* is thejth contribution to the stress tensor as 
given by Lodge and Wu, and no is the number of macromolecules per unit volume. 
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Fig. 1. Effect of hydrodynamic interaction on viscosity-shear rate relation. 

Here, { is the bead friction coefficient, qs is the solvent viscosity, b is the 
r.m.s. length of a ‘‘submolecule” at rest, and his a measure of the “strength” 
of bead-bead hydrodynamic interaction. By making the substitution D + 
(1 - e)D in eqs. (4) and ( 5 ) ,  we arrive a t  what might aptly be called a 
continuum-modi$ed multibead spring theory. 

THEORY PREDICTIONS 

Effects of Hydrodynamic Interaction 

The effects of hydrodynamic interaction on the predictions of the con- 
tinuum-modified multibead spring model may be determined by calculating 
material functions for various values of the parameter h. It is interesting 
to  note, however, that h does not appear explicitly in the constitutive equa- 
tion and therefore does not affect the form of the model expressions for any 
material function. and as a re- 
sult affects only the calculation of the relaxation times 8,.9 

Parameter h appears only in the matrix 

Small-Amplitude Oscillatory Shear Flow 

For the case of small amplitude, oscillatory shearing flow, eqs. (4) - (7), 
with D replaced by (1 - E)D, lead to  the following expressions for the stor- 
age and loss moduli: 

where w B  = elm, R is the gas law constant, and M e  = M/(1 - c). These 
expressions are identical with the corresponding results in the multibead 
spring model, except that in the latter case, M e  = M.’ For very dilute 
solutions or very low molecular weights, where the degree of non-Newtonian 
behavior is slight, E is small and M e  = M .  On the other hand, as the solu- 
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Fig. 2. Effect of hydrodynamic interaction on primary normal stress difference-shear 
rate relation. 

tion concentration is raised, t increases and M e  > M .  Ferry and co-work- 
ers have observed precisely this behavior experimentally. 1,10 That is, in 
the comparison of the Rouse-Zimm theory with experimental dynamic data, 
it was necessary to  allow M to  be an adjustable parameter for the more con- 
centrated solutions, with the value of ('Meffeetivell increasing with concentra- 
tion.1° For very dilute solutions, Metfeotive was found to  be equal to the 
true polymer molecular weight. The present theory thus eliminates this 
additional difficulty associated with the multibead spring model as well as 
providing realistic predictions of non-Newtonian behavior. 

Simple Shearing Flow 
For simple shearing flow (vl = Gx2, v2 = 0, 213 = 0) ,  the continuum-mod- 

ified multibead spring theory yields the following expressions for the non- 
Newtonian viscosity and primary normal stress difference : 

where GR = BIG, C2 = t(2 - t), and no is the number of macromolecules 
per unit volume (NAc /M) .  A comparison of these expressions with those 
for the reduced dynamic moduli GR' and GR" in the Rouse-Zimm theory' 
shows that the dependence of the quantity (7 - ? S ) R / ( 1  - t) on CGR is 
identical to  the dependence of (GI' - w ~ ~ ) ~ / w ~  on w R  in the Rouse-Zimm 
theory. Similarly, Cz(N1),/2(1 - t) turns out to  have the same functional 
dependence on CGR as does GIR' on uR in the Rouse-Zimm theory. As a re- 
sult of this, the predicted effects of variations in hydrodynamic interaction 
on the non-Newtonian viscosity and primary normal stress difference in the 
present theory may be obtained from calculations done previously for the 
Rouse-Zimm theory. For example, Figures 1 and 2 have been constructed 
using the tabulated values of G,' and GRr' in Ferry.' 
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The viscosity predictions in Figure 1 are typical of those obtained experi- 
mentally for dilute polymer solutions. This is in marked contrast to the 
Rouse-Zimm theory, which predicts no shear rate dependence at all for q .  
The figure indicates that the primary effect of increasing hydrodynamic in- 
teraction is a gradual increase of the slope in the high shear rate region from 
a value of - 1/2 for the free draining model (h = 0), to - 1 / 3  for the case of 
dominant hydrodynamic interaction (h = 00 ). In the case of the primary 
normal stress difference, Figure 2, increasing values of h result in a similar 
increase in the slope in the high shear rate region. A t  low shear rates, N1 is 
proportional to G2, while for increasing values G of a proportionality of the 
form N1 oc G’, p < 2 is observed. This behavior isagain typical of that 
seen with polymer solutions, although few measurements have been reported 
at truly “dilute” concentration levels. Note that the Rouse-Zimm theory 
predicts iV1 - G2 for all values ofG”. 

The secondary normal stress difference may also be calculated with ease 
in the present theory and is found to be 

From eqs. (14) and (15), we have 

and since c is usually quite small, N2 is predicted to be a small negative quan- 
tity, again in agreement with the generally accepted rheological behavior of 
polymer  solution^.^^-^^ The Rouse-Zimm theory, on the other hand, pre- 
dicts N2 = 0 (recall that the present results reduce to those of the Rouse- 
Zimm theory for E = 0).  

Bird-Carreau Relation for Relaxation Times 

The unknown parameters h and e in the present theory are determined by 
comparing the predicted solution behavior with experimental results. The 
parameter h, however, is rather difficult to use, since its value cannot be ob- 
tained directly from experimental data for any material function. Rather, a 
series of theoretically calculated curves for various values of h must be vis- 
ually compared with the data to determine the specific value of h giving the 
best fit. This method requires experimental data over a, broad range of 
shear rates or frequencies and is not well suited for computer analysis. 

As discussed above, variations in hydrodynamic interaction affect only 
the calculation of the relaxation times, ei. The results in Figures 1 and 2 in- 
dicate that increasing values of h produce a smooth transition from the free 
draining coil (h = 0), for which 

el e, E - 
j 2  



BEAD SPRING THEORY 

0 -  

- -1 - 

-2 - 
ds 
v 

0 - 

3143 

az1 .5  
a =I  .65 

d =2.0 
d =I  .8 

-2 -I 0 I 2 3 
log (CGR) 

Fig. 3. Effect of Bird-Carreauls parameter (Y on viscosity-shear rate relation. Note that 
effects are analogous to those obtained by varying hydrodynamic interaction. 

to the case of dominant hydrodynamic interaction (h  = 03 ), where 

Such considerations suggest that an empirical relation of the form 

el e5 = 
3 

should be useful as an alternative to the lengthy computations required for 
intermediate values of h. This relationship was used by Spriggs in a consti- 
tutive theory similar in form to that presented here.16 We have found eq. 
(18) to lead to  rather unrealistic predictions of q for large values of a (which 
are required to describe highly non-Newtonian systems). Bird and Car- 
reau were also led to similar con~lusions,~~ and the more recent Bird-Carreau 
model utilizes a relationship between the relaxation times of the form1* 

This expression leads to much more realistic predictions of material re- 
sponse. 

The inclusion of an explicit expression for e j  of the form of eq. (19) in the 
present theory results in a predicted material dependence on the parameter 
a that is essentially identical to the behavior illustrated in Figures 1 and 2 
for variations in h. Figure 3 illustrates the effects of variations in a on the 
non-Newtonian viscosity. Here we have plotted q - qs/(qo - qs) versus 
CGR, where qo is the zero-shear viscosity. Clearly, changes in a affect pri- 
marily the slope in the high shear rate region of the curves, in a manner 
quite similar to variations in h. However, the parameter a, in contrast to h, 
is simply related to the experimentally observed slope, S, in the high shear 
rate region of the viscosity curve by the relation 

1 - a  s = -  
a 
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(an identical result holds for the Bird-Carreau theory). As a consequence, 
the determination of a in any particular application is generally a simple 
procedure. Furthermore, utilizing eq. (19) in the present theory results in 
a constitutive equation that can be modified to  include polydispersity in a 
straightforward manner. The classical hydrodynamic interaction formula- 
tion, although theoretically more appealing, presents a very formidable 
computational task in this regard. 

Polydispersity Correction 
I n  the case of dilute polydisperse solutions, the previous constitutive 

equation is assumed to  apply to  each molecular weight fraction, the total 
stress being obtained by a summation over all fractions. The present theory 
then takes the form 

where i refers to  a particular molecular weight species and N is the number 
of '%iubmolecules'l for that species. The relaxation times are obtained 
from the relation 

7slr)IotMt e5* = 
( ~ ( a )  - l)NakT(l - ~ ) ( 1  + j ) a  

7sKM 
(23) - - 

(z ( (Y)  - l)NakT(l - €)(I + j ) a  

where [ ? l o i  is the zero shear rate intrinsic viscosity of a monodisperse solu- 
tion corresponding to  molecular weight M {, K and a are the Mark-Hou- 
wink constants (assumed independent of molecular weight), and z(a) is the 
Riemann Zeta function, l9 

" 1  
s = 1  s 

z ( a )  = C 2. 

We next assume that the molecular weight distribution may be suitably 
represented by the Schulz-Zimm distribution20s21 

where dn is the fraction of macromolecules with molecular weights in the 
range M t o  M + d M ,  and z is defined by 

The parameter z characterizes the breadth of the molecular weight dis- 
tribution and may range from - 1 to co , corresponding to  M , / M n  = co 
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and M , / M n  = 1.0, respectively. The commonly observed most probable 
distribution corresponds to z = 0, and z = 1 characterizes the case of vinyl 
polymerization terminated by free-radical recombination. 

EXPLICIT MODEL PREDICTIONS USING EQ. (19) 
The expressions developed so far account for the effects of polydispersity 

(through the parameter z ) ,  polymer-solvent interaction (through the Mark- 
Houwink constants K and a) ,  and temperature (assuming e and a are inde- 
pendent of temperature and that the temperature dependence of qs, K ,  
and a is known or can be estimated). Thus, we have a t  our disposal an  
explicit constitutive equation, which yields realistic predictions for steady 
shearing flow, accounts for the effects of a variety of physicochemical vari- 
ables, and contains only two arbitrary constants, a and e. In  the follow- 
ing discussion, we examine the ability of this constitutive equation to  de- 
scribe a variety of intrinsic viscosity shear rate data, both for monodisperse 
and polydisperse solutions, with differing degrees of solvent power. Since 
i t  is assumed in the theory that the solution is so dilute that intermolecular 
interactions may be neglected, intrinsic viscosity data, where the specific vis- 
cosity is extrapolated to zero concentration, form an ideal basis with which 
to  test these results. 

The theoretical predictions for the intrinsic viscosity are found to  be 
as follows: 

Monodisperse solutions : 

Polydisperse solutions : 

dx (27) ia N 

x c  + 2 j Z a  + (B~wx '+"/ (z (a)  - 1 ) ) 2  

KM,"r(z  + 2 + a)  
(2 + 2)=r(z + 2 )  

h l o  = 

In  these expressions, B2 = 4 2  - e ) / ( l  - c ) ~ ,  r is the gamma function, and 
0 and pw are dimensionless shear rates defined by 

The behavior of eq. (27) is plotted in Figures 4 and 5 .  Figure 4 illus- 
These results have been obtained as- trated the effects of polydispersity. 
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Fig. 4. Model predictions: effect of polydispersity on intrinsic viscosity-shear rate 

relation. 
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Fig. 5. Model predictions: effect of polymer-solvent interaction (as reflected by Mark- 

Houwink exponent a )  on viscosity-shear rate relation. 

suming the typical values a = 0.75, a: = 2.0, and the specified values of 
M,/M,. The curves indicate that the more polydisperse solutions show an 
earlier deviation from Newtonian behavior, with a smaller slope in the high 
shear region. These are the general effects observed e ~ p e r i r n e n t a l l y . ~ ~ ~ ~ ~  

Figure 5 illustrates the predicted effect of the Mark-Houwink-Sakurada 
exponent a on the [7]/ [r]]crversus-@w relationship. In  the calculation of 
these results, the values a: = 2.0 and z = 0 have been used. The parameter 
a is a measure of polymer-solvent interaction, with the value a = 0.5 cor- 
responding to a theta solvent. Larger values of a correspond to increas- 
ingly better solvents. The results in Figure 5 show that the better sol- 
vents show earlier departure from Newtonian behavior, again in agreement 
with accepted experimental  trend^.^^-^^ 

Suzuki, 
Kotaka, and InagakiZ4 have investigated the effects of molecular weight 
and polymer-solvent interaction on the intrinsic viscosity-@, relation. 
Their experimental results for four solutions are plotted in Figures 6 and 7. 
Figure 6 illustrates the effect of polymer-solvent interaction for solutions of 
polystyrene ( M ,  = 6.0 x lo6, M w / M ,  = 1.2) in benzene and Aroclor (a 
chlorinated diphenyl). The polymer-solvent interaction, or solvent power, 

We now turn to some specific intrinsic viscosity-shear rate data. 
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Fig. 6. Log[ q ] / [ q l O  vs. log for polystyrene in benzene( 0 )  and Aroclor (.)z4: (-) 

model predictions for polydisperse solutions. 
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Fig. 7. Log [q] /[710 vs. log BW for polystyrene in benzenez‘: (-) model predictions for 

polydisperse solution. 

is characterized by the hydrodynamic expansion factor [ [7]o/ [ T ] ~ , ~ ] ” ’ ,  where 
[7]0,8 is the zero-shear rate intrinsic viscosity in a theta solvent. These 
values are 1.80 and 1.31 for polystyrene in benzene and Aroclor, respec- 
tively. The predictions of eq. (27), using the literature values of a (0.77 
for benzenez7 and 0.64 for Aroclorz8) are represented by the solid lines in 
the figure, and the corresponding values of E and a are tabulated in Table I. 

Figure 7 illustrates the effect of weight-average molecular weight on the 
intrinsic viscosity-@, relation, for two polystyrene fractions ( M ,  = 3.16 X 
lo6, M ,  = 7.14 X lo6) in benzene. Although the M,/M, values for the 
fractions were not given we used the same value (1.2) reported by Suzuki 
et al.z4 for the solvent study above. The resulting theory predictions are 
represented by the solid lines, and the corresponding values of a and a are 
tabulated in Table I. For both Figures 6 and 7, the theoretical curves were 
obtained as follows: For given values of a and z, curves of [7]/ [7]0 versus 
B@, for different values of a were calculated from eq. (27). These curves 
were shifted along the log @, axis so as to obtain superposition with the 
experimental data, and the value of a giving the best fit thereby obtained. 
The value of B and thus e was then calculated from the extent of the hori- 
zontal shift. 
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TABLE I 
Summary of Intrinsic Viscosity-Shear Rate Data 

Temp., [TI 0 ,  

Polymer Solvent "C MW ff dl/g 

Polystyrene benzene 
Aroclor 
benzene 
benzene 

Cellulose nitrate ethyl acetate 
ethyl acetate 
ethyl acetate 

Sodium car- water 

boxymethyl- 0.01M NACl 
cellulose 0.2M NACl 

30 6 . 0  X lo6 
40 6 . 0  X 106 
30 3.16 X lo6 
30 7.14 X lo6 
25 0.37 X lo6 
25 1 .9  X lo6 
25 5 . 5  X lo6 
25 9 . 1  X 105 

25 9 . 1  X lo6 
25 9 .1  X 106 

1.28 
1.20 
1.28 
1.28 

1.70 
1.70 
1.70 

4.40 

1.57 
1.47 

11.65 
4 .50  
7.04 

13.5 

10.1 
41 .3  
104 

1370 

46.6 
20.7 

0.73 
0.77 
0.57 
0.71 

0.35 
0.10 
0.032 
3 . 4  x 

0.48 
0.75 

10-4 

-2 - I  6 I i i 
log (PI 

Fig. 8. Log [q] /[TI,, vs. log p for solutions of cellulose nitrate in ethyl acetatez8: (0) 
M ,  = 5.5 X 106; (A) M ,  = 1.9 X 106; (m) M ,  = 0.36 X lo6; (-)model predictions 
for monodisperse solution. 

Lohmander and S v e n s ~ o n ~ ~  have also studied the effects of molecular 
weight on the [TI/ [q]0-versus-& relation for various fractions of cellulose 
nitrate in ethyl acetate. Their results for M ,  = 5.5 X lo6, 1.9 X lo6, and 
0.36 X lo6 are plotted in Figure 8. The distribution widths for these frac- 
tions were not reported, thus precluding the application of eq. (27). How- 
ever, in order to gain some insight into the molecular weight dependence of 
E ,  the predictions of eq. (26) for monodisperse solutions have been compared 
to these data. The monodisperse model predictions are indicated by the 
solid lines in the Figure, and the calculated values of a and t are tabulated 
in Table I. It is clear that the theory is capable of quite accurately de- 
scribing this data. 

Figure 9 illustrates the intrinsic viscosity-shear rate relation for a poly- 
electrolyte (sodium carboxymethylcellulose) a t  different ionic strengths, as 
reported by Lohmander and Str~mberg.~o Here again, the solutions were 
assumed to be monodisperse, and a and e were calculated fromeq. (26). The 
values thus obtained are also listed in Table I. In  Figures 8 and 9, the 
theoretical curves were calculated as follows: The slopes in the high shear 
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log c/3, 

Fig. 9. Log [ q ]  / [q10 vs. log 0 for solutions of sodium carboxymethylcellulose in aqueous 
(0) NACl molarity = 0.0; (A) NACl molarity = 0.01; (m) NACl NACl solutions30: 

molarity = 0.2; (-)model predictions for monodisperse solutions. 

rate region was measured, and from eq. (20) a was calculated. A plot of 
[7]/ [7]0 versus BP was then made using eq. (26) and superimposed with the 
experimental data; the measured shift then yielded B. 

Figures 6-9 illustrate the ability of the current model to  accurately de- 
scribe a wide variety of experimental intrinsic viscosity-shear rate data. In  
each figure, the data have been fit using only the two adjustable parameters 
a and E .  The value of a varies between 1.20 and 1.70 for all the solutions, 
except the sodium carboxymethylcellulose (CMC) in water. In  water, 
CMC is highly extended, due to  the mutual repulsion of adjacent carboxyl 
groups. Thus, we can anticipate rather abnormal viscosity behavior as 
compared to  the nonelectrolyte solutions. The values of t range from 3.35 
X up to 0.766, reflecting primarily the large range of p (or pS) over 
which non-Newtonian effects first appear. The dependence of t on molecu- 
lar weight and solvent power appears to be rather obscure a t  present. 

Stress Relaxation 

As we noted earlier, our single relaxation time-modified bead spring 
theory lead to  the prediction that the rate of stress relaxation following the 
cessation of simple shearing flow was independent of initial velocity gradient 
G. In  the present theory, stress relaxation following steady shearing flow is 
described by 

where C2 = 4 2  - t) and t is the time following the cessation of flow. Using 
the typical values 7 l S  = 0.01 poise, a! = 2.0, t = 0.1, [ 7 ] 0  = 10.0 dl/g, M = 
lo6, and T = 298"K, we find 

61 = 1.74 X lop4 sec. 
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TABLE I1 
Stress Relaxation Predictions-Monodisperse Solutions 

Time, sec G = 100 sec-1 G = 1000 sec-1 G = 10,000 sec-1 

1 . 0  x 10-7 

1.0 x 10-5 
1 . 0  x 10-4 
1 . 0  x 10-3 

1.0 x 10 

1.0  x 10-2 

1.0 x 10-7 

1.0 x 10-4 
1 . 0  x 10-3 

1.0 x 10-6 
1 .0  x 10-5 

1 .0  x 10-2 

a. 6 = 1.74 X sec 
0.97 0.97 
0.90 0.90 
0.70 0.70 
0.28 0.28 
0.001 0.001 
0.000 0.000 

b. 6 = 1.74 X sec 
0.99 0.99 
0.97 0.96 
0.90 0.88 
0.70 0.66 
0.28 0.23 
0.001 0.001 

0.96 
0.88 
0.66 
0.23 
0.001 
0.000 

0.97 
0.90 
0.71 
0.32 
0.034 
0.000 

The corresponding values of T ~ , ( ~ ) / T , , ( O )  are listed in Table I1 versus t ,  
for various values of G. Although the rate of relaxation does increase with 
increasing G, the effect is extremely small. It was suspected that this was 
due to the rather small value of the principle relaxation time. (Relaxation 
times for concentrated polymer solutions and melts, where the effect of G 
on relaxation rate is pronounced, are 2 to  4 orders of magnitude larger.) 
To test this hypothesis, we recalculated T ~ ~ ( ~ ) / T ~ ~ ( O )  using a value of O1 = 
1.74 X As indicated in Table 11, the effect of increasing G is 
much more pronounced. 

sec. 

SUMMARY 

A continuum-modified multibead spring theory has been developed, 
which includes the Rouse-Zimm theory as a special case (e = 0). The 
theory yields realistic predictions for steady shearing flow, including a non- 
Newtonian viscosity function, a nonzero positive N1, and a nonzero nega- 
tive NP,  while at the same time the dynamic viscosity predictions are simi- 
lar to  those of the Rouse-Zimm theory. The effects of molecular weight, 
molecular weight distribution, and polymer solvent interaction are ex- 
plicitly accounted for. The theory was found to  quantitatively describe a 
variety of intrinsic viscosity-shear rate data. 
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